(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(X)) → c(f(g(f(X))))
c(X) → d(X)
h(X) → c(d(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(f(g(f(z0))))
c(z0) → d(z0)
h(z0) → c(d(z0))
Tuples:
F(f(z0)) → c1(C(f(g(f(z0)))), F(g(f(z0))), F(z0))
H(z0) → c3(C(d(z0)))
S tuples:
F(f(z0)) → c1(C(f(g(f(z0)))), F(g(f(z0))), F(z0))
H(z0) → c3(C(d(z0)))
K tuples:none
Defined Rule Symbols:
f, c, h
Defined Pair Symbols:
F, H
Compound Symbols:
c1, c3
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
F(f(z0)) → c1(C(f(g(f(z0)))), F(g(f(z0))), F(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(f(g(f(z0))))
c(z0) → d(z0)
h(z0) → c(d(z0))
Tuples:
H(z0) → c3(C(d(z0)))
S tuples:
H(z0) → c3(C(d(z0)))
K tuples:none
Defined Rule Symbols:
f, c, h
Defined Pair Symbols:
H
Compound Symbols:
c3
(5) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 1 dangling nodes:
H(z0) → c3(C(d(z0)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → c(f(g(f(z0))))
c(z0) → d(z0)
h(z0) → c(d(z0))
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
f, c, h
Defined Pair Symbols:none
Compound Symbols:none
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))